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Carbon-based materials are unique in a sense that they combine two conflicting, probably even antagonistic, for the first glance, properties: stability and versatility. This is most likely the reason that the Nature chose this element as a basis for life. Indeed, the high stability of the carbon bonds ensures that the basic structure of DNA is transferred from generation to generation basically unchanged (stability). At the same time a huge variety of chemical metamorphose is available for organic compounds (versatility), thus giving a chance to change, replicate, transfer and store energy, etc. Just to give one example: take a backbone of only two carbon atoms with some hydrogen, and they can form three different chemical compounds, each with very different properties. Two carbon and two hydrogen atoms would form ethyne (also known as acetylene – the gas used in welding), adding two more hydrogen will turn it into ethene (aka ethylene, with extensive use in anaesthesia) and an addition of even two extra hydrogen atoms will give us ethane – a chemical used in freeze-drying (and adding one oxygen to ethane would give us vodka).

The same diversity can be seen in various crystal forms of carbon. Diamond, the three-dimensional allotrope, would be an analogue of ethane (in a sense that in both cases the carbon atoms have four neighbours), whenever graphene is similar to ethene, as each carbon atom in graphene also has three nearest neighbours. It is interesting to note that, graphene hasn’t been observed in its free form until very recently, despite being probably the best-studied theoretically carbon allotrope. Graphene - planar, hexagonal arrangements of carbon atoms - is the starting point for all calculations on graphite, carbon nanotubes, and fullerenes. In 2004 however, a very simple, but effective approach to obtain graphene lead to a revolution in the field
. A single sheet (a monolayer of atoms) was extracted from 3-dimensional graphite using a technique called micromechanical cleavage.

Diamond and graphene have remarkably different electronic properties. Whenever the former is a good insulator with a large energy gap in the electronic spectrum – the later is a zero-overlap semimetal. The reason for this is in the different electronic states of carbon atoms which forms the two materials. Generally, carbon has four electrons in its outer shell. In diamond, all of them are involved in the strong (-bonds, so a huge gap in the electronic band structure appears. Quite in contrast, for carbon atoms in graphene, only 3 electrons form (-bonds, and the fourth one is in a communal use, forming the so-called (-bonds, making graphene a good conductor.

Electronic Structure of Graphene

Such electronic structure of carbon atoms in conjunction with the hexagonal symmetry of graphene lattice give rise to a very interesting phenomenon: low-energy quasiparticles in graphene obey linear dispersion relation. Hexagonal lattice is not a Bravais lattice – instead, the unit cell contains two atoms, usually denoted as A and B (or, one can talk about two sublattices: A and B). Quantum mechanical hopping between the sublattices leads to the formation of two energy bands, and their intersection near the edges of the Brillouin zone yields the conical energy spectrum near the K and K' points. As a result, quasiparticles in graphene exhibit the linear dispersion relation  E=ħkvF as if they were massless relativistic particles, with the role of the speed of light played by the Fermi velocity vF(c/300. They can be formally described by the Dirac-like Hamiltonian H=-iħvF((, where  (=((x, (y) are the Pauli matrices
. Due to the linear spectrum, one can expect that graphene's quasiparticles behave differently from those in conventional metals and semiconductors where the energy spectrum can be approximated by a parabolic (free-electron-like) dispersion relation. This description has been proven experimentally by measuring the energy-dependent cyclotron mass in graphene (which yields its linear energy spectrum).

Although the linear spectrum is important, it is not the only essential feature that underpins the description of quantum transport in graphene by the Dirac equation. Above zero energy, the current carrying states in graphene are, as usual, electron-like and negatively charged. At negative energies, if the valence band is not completely filled, its unoccupied electronic states behave as positively charged quasiparticles (holes), which are often viewed as a condensed-matter equivalent of positrons. Note however that electrons and holes in condensed matter physics are normally described by separate Schrodinger equations, which are not in any way connected (as a consequence of the Seitz sum rule, the equations should also involve different effective masses). In contrast, electron and hole states in graphene are interconnected, exhibiting properties analogous to the charge-conjugation symmetry in QED. For the case of graphene, the latter symmetry is a consequence of its crystal symmetry because graphene's quasiparticles have to be described by two-component wavefunctions, which is needed to define relative contributions of sublattices A and B in the quasiparticles' make-up. The two-component description for graphene is very similar to the one by spinor wavefunctions in QED but the ``spin'' index for graphene indicates sublattices rather than the real spin of electrons and is usually referred to as pseudospin (.

Quantum Hall Effect in Graphene
Such unusual electronic structure gives rise to a number of interesting phenomena observed in graphene. The most striking consequence of the chiral nature of quasiparticles in this material is the observation of the relativistic analogue of the Quantum Hall Effect (QHE). QHE in single layer graphene shows up as an uninterrupted ladder of equidistant steps in Hall conductivity  (xy which persists through the neutrality (Dirac) point, where charge carriers change from electrons to holes (Fig. 1). The sequence is shifted with respect to the "standard" QHE sequence by 1/2, so that (xy =(4e2/h (N + 1/2) where N is the Landau level (LL) index and factor 4 appears due to double valley and double spin degeneracy. The QHE has been dubbed "half-integer" to reflect both the shift and the fact that, although it is not a fractional QHE, it is not the integer QHE either. The unusual sequence is now well understood as arising due to the QED-like quantization of graphene's electronic spectrum in magnetic field B, which is described by EN=(vF(2eħBN)1/2 where sign ( refers to electrons and holes. The existence of a quantized level at zero energy, which is shared by electrons and holes, is essentially everything one needs to know to explain the anomalous QHE sequence. An alternative explanation for the half-integer QHE is to invoke the coupling between pseudospin and orbital motion, which gives rise to a Berry phase of ( accumulated along cyclotron trajectories. The additional phase leads to a half-period shift in the phase of quantum oscillations and, in the QHE limit, to a half-step shift.

Graphene linear spectra and the large value of the Fermi velocity ensures huge orbital splitting. The energy gap between N=0 and N=(1 Landau levels is given by (E(400(K)·B1/2, where B is magnetic field in Tesla. This implies that at B=30T the splitting is of the order of 2200K, almost an order of magnitude higher than the room temperature. Moreover, temperature independent high mobility (() ensures that the high field limit (B(1 is satisfied in a modest field of a few Tesla. These led to observation of QHE at room temperatures, which is very promising for metrology applications.

Field Effect in Graphene and the Problem of Minimal Conductivity
Graphene crystals obtained by micromechanical cleavage (as well as by other methods, which appeared recently) are of very high crystallographic quality, which is reflected by high mobility of its charge carriers. Furthermore, the carrier concentration in graphene-based devices can be controlled by external electric field (gating). In the limit of large carrier concentration the conductivity of graphene is simply proportional to the concentration. However, rather unexpectedly, it doesn’t vanish to zero in the limit of nominally zero concentration, when the Fermi level is positioned exactly between the valence and the conduction bands (the Dirac point). Instead, it exhibits values close to the conductivity quantum e2/h per carrier type. I would like to emphasize that it is the resistivity (conductivity) rather than the resistance (conductance) that is quantized, in contrast to all other known quantum transport phenomena.

Minimum quantum conductivity has been predicted for Dirac fermions by a number of theories
. Some of them rely on a vanishing density of states for the linear 2D spectrum. However, comparison between the behaviour of massless and massive Dirac fermions in graphene and its bilayer allows one to distinguish between chirality- and masslessness- related effects. To this end, bilayer graphene (where charge carriers are also chiral, though have parabolic spectrum) also exhibits a minimum conductivity of the order of e2/h per carrier type which indicates that it is chirality, rather than the linear spectrum, that is more important. However, experimentally the situation might be even more complicated. In particular, it has been demonstrated that, at low concentrations n<1011 cm-2, graphene conducts as a random network of electron and hole puddles. Furthermore, macroscopic inhomogeneity (on the scale larger than the mean free path) may also play an important role.

Another way to look at the problem of finite conductivity in the limit of zero carrier concentration is to make another connection with the quantum electrodynamics. It is well known that relativistic particles can penetrate through a potential barrier without scattering – thanks to existence of charge-conjugated states with negative energy. However, this paradox (dubbed the Klein paradox) hasn’t been proven experimentally in the framework of relativistic physics. It looks like graphene with its finite conductivity at the Dirac point provides a playground for a realization of Klein’s gedanken experiment. Chiral quasiparticles in graphene simply can not be localised, which differs graphene from any other 2-dimensional electronic systems. 
The realisation of field effect in graphene immediately sparked significant enthusiasm about using graphene for transistor applications. Thanks to large mobility and high Fermi velocity of the charge carriers, such transistor could operate at very high frequencies. Indeed, recently two companies (IBM and HRL) demonstrated their first graphene transistors operational in GHz region. However, using graphene for logic applications is rather problematic exactly due to the finite conductivity at the Dirac point, which limits the achievable ON/OFF ratio by about 2 orders of magnitude only (generally, modern applications require at least 5 orders of magnitude). Such limitation looks fundamental for the quasi-relativistic charge carriers in graphene. One would need to alter the band structure of this material in order to achieve localisation of quasiparticles in graphene and pinching off of the conductivity.

One of the possible ways to do it is to learn from carbon nanotubes and introduce a bandgap due to size quantization. It has indeed been realised in graphene nanoribbons
, quantum dots
 (Fig. 2) and quantum point contacts, which were carved from continuous sheets of graphene by reactive plasma etching or tip-assisted local anodic oxidation. Robustness of carbon-carbon bonds allows formation of truly nanometre-size structures, which are stable under ambient conditions and can pass significant current. Considering that such nanostructures can contain only few tens of carbon atoms, one can talk about top-down molecular electronics. There are a few problems associated with this approach. It is very hard to achieve atomically smooth edge when etching such nanostructures, and the edge roughness introduces significant level of disorder. Furthermore, the electronic properties of smallest graphene nanostructures depend crucially on the type of termination of dangling carbon bonds – something we still need to learn how to control.

Chemical Modification of Graphene
 Alternative way of changing the band structure of graphene would be to use the versatility of carbon atoms discussed in the beginning of the article. One could bound the conductive electrons, which form the conductive (-bands, to some other chemical and produce a large bandgap. The simplest and most straightforward candidate to occupy the extra carbon bond in graphene is hydrogen (Fig. 3). It is well known in chemistry that ethene can be easily converted into ethane. Similarly, one can turn graphene into graphane simply by exposing the former to atomic hydrogen. The expected structure of graphane is of course much more complicated – one needs to preserve the angles between the bonds in, now, sp3 hybridized carbon, maintaining overall flat structure of the crystal. One of the possible ways of doing so is to attach hydrogen from the two sides – every other carbon atom would have hydrogen atom attached from another side. Such structure has been predicted recently, and indeed, a gap opening of about 5eV is expected for perfect graphane.

Recently graphane has been realised experimentally. By exposing pristine graphene to a stream of atomic hydrogen (generated in plasma discharge) it was possible to change many of graphene’s properties rather dramatically. The most striking observation is the change in conductive properties: metallic graphene was turned into insulating graphane, with resistance reaching GOhms in the limit of low (helium) temperatures. At the same time, the new material obtained is still highly ordered - electron diffraction confirmed high crystallographic quality of graphene treated with hydrogen, with hexagonal symmetry still preserved (though the lattice constant shrank by a few percents). Among other changes underwent in graphene is the changes in surface chemistry – hydrophobic graphene became strongly hydrophilic upon accepting hydrogen atoms.

The interpretation of the experimental results is, however, not absolutely straightforward. As it has been mentioned earlier, the most stable structure predicted for graphane is with hydrogen occupying the two different sublattices from the opposite sides of the crystal. At the same time, most of the experiments have been performed using graphene resting on SiO2 substrate, thus making one side inaccessible for hydrogenation. Only the electron diffraction study has been done using free standing graphene with both sides accessible, but even there, a distribution of domains with various lattice constants have been found (although the lattice constant was always smaller than that in graphene). This might indicate that more complicated arrangements of hydrogen on the surface are realised in practice.

Creation of graphane is certainly a very important step for the whole field. Graphane opens a floodgate to chemical modification of graphene, and to the appearance of novel two-dimensional atomic crystals with predetermined properties. Other compounds are to follow soon, with, for instance, the fluorination of graphene should be rather straightforward.
Conclusions
Graphene is the first example of a truly two-dimensional crystal. This opens many interesting opportunities in studying  thermodynamics, lattice dynamics, and structural properties of such systems. Being a zero-overlap semimetal with linear energy spectrum, single-layer graphene realizes a two-dimensional, massless Dirac fermion system that is of crucial importance for understanding unusual electronic properties, such as an anomalous QHE, absence of the Anderson localization, etc. Furthermore, these peculiar properties sparkled significant interest to this material from the point of view of applications. Recent developments in mass production of graphene (which include chemical exfoliation, epitaxial growth on silicon carbide as well as on a surface of various metals) allow for some optimism that graphene will be used in real devices rather soon. Among the most prominent applications are high frequency transistors and transparent conductive coating. Additionally, the novel direction of chemical modification of graphene will be of interest for use in composite materials.
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Fig. 1 Bilayer graphene flake on a surface of SiO2 (300 nm). The scale bar is 100(m.
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Fig. 2 Quantum Hall Effect in graphene, B=8T. Red curve: (xy; blue curve: Rxx as a function of gate voltage (carrier concentration).
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Fig. 3 Artistic view of a graphene quantum dot.
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Fig. 4 Crystallographic structure of graphane. Each carbon atom (large, grey spheres) is linked to one hydrogen atom (small, yellow spheres). 
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